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ABSTRACT

Let .4 be a set of n x n complex matrices A which satisfy the

condition 1(I - zA)- 1 1 K/(i - IzJ)a + 1  for some a ; 0 and all Izi < I.

Then it is shown here that there exists a constant p(a,n) such that

V a
1IA 11 < Kp(a,n)v , v = 0,1,.... This forms a generalization of the Kreiss

resolvent condition (a = 0).
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SIGNIFICANCE AND EXPLANATION

Let A be an n x n complex valued matrix. A standard and useful

result in matrix theory claims that all powers of A are boundee if and only

if the spectral radius-p(A) - is less or equal to one and for all eigenvalues

A of A such that IA! - 1 the matrix (I - zA)"1  has a simple pole at

z - 1. If we consider a more general problem, namely when the powers A,

V 0,1,..., grow at most as v , where a is a positive integer, then

this condition holds if and only if p(A) 4 1, and for all eigenvalues X

of A such that XIJ = 1 the matrix (I - zA) -I has at most a pole of order

a+ I at z = A.

-,.In the early sixties H. 0. Kreiss, while studying stability of numerical

schemes for partial differential equations, considered a generalization of -tp

first problem,described above. Namely, given a set A of n x n complex

valued matrices, when all powers of A' A are uniformly bounded. These sets

- called the stable sets - were completely characterized by Kreiss by giving

three equivalent conditions.

In this paper werconsider '*-stable sets A (4 0), such that .for any

A the powers are uniformly bounded e generalize the
CA - -

Kreiss resolvent condition for I 1-stable sets. It seems that,%-stable sets

are related to the concept of weakly stable numerical schemes for partial

differential equations.
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A GENERALIZATION OF THE KREISS MATRIX THEOREM

Shmuel Friedland

1. Introduction

In various instances one deals with iterative systems of equations

(1.1) 
(i+

l
) =  

Ax
( i t

, i = 0,1,2,... .

Here x
( i

) e Cn, A , Mn, where C
n  

is the set of n column complex vectors and Mn  is

the set of n x n complex matrices. Clearly

(1.2) x(i) = Aix
(0 )

and thus in order to investigate the behaviour of x(i) for large i one needs to study

the powers A
i
, i = 0,1,.... Let A be a set of n x n matrices. A is called

an a-stable set if

(1.3) 1IAVII 4 V , = 0,1,2,...

Here a is a nonnegative number and i1.u1 is a norm on Mn . The concept of stability of

the numerical schemes for solutions of partial differential equations is intimately

connected with the notion of stable sets. Consult for example Kreiss [19621, Richtmyer and

Morton (1967] and others. It seems that a-stable sets are related to the concept of weakly

stable numerical schemes for partial differential equations. See Kreiss (1962] and Forsyt'

and Wasow [1960]. The stable sets were characterized completely by Kreiss (19621. In this

paper we generalize the Kreiss result to a-stable sets.

Theorem 1. Let a be a nonnegative number and A be a set of n x n complex valued

matrices. Then the following two conditions are equivalent.

(A) There exists a constant K(P 1) such that for all A e A (1.3) holds.

(R) There exists a constant K() 1) such that for all A EA

(1.4J MI - zA) 
1 uC f W - I)

"
+1

)
, 121 a I

! The implication (A) --> (P) is obvious. The implication (R) -=> (A) is a conspauence

of Theorem 2 which estimates the Maclaurin coefficients of a certain family of rational

Sponsored by the UniteA States Army under Contract No. DAAG29-80-C-0041.
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functions in terms of the qrowth of their moduli. We were not able to give conditions

analoqous to the conditions (S) and (H) of Kreiss.

2. Coefficient Estimates for Certain Analytic Functions

Let D be a unit disc Iz. < 1, S.uppose that f(z) is an analytic function in D.

Consider the Maclaurin expansion of f

(2.1) f(z) = a zI Ii < 1
V=O

Suppose that

(2.2) Ja j 4 (Wva
,  

0,1,2 ....

for a > -1. It is a standard result in theory of special functions (e.g. Olver [1974, p.

119!1 that

(2.3) V ()) -(0 + I) = l(, + 9 + 1)
v ' 1 F(V + 1)(a + 1)

Here two positive sequences (um I and fvm} are called equivalent um  vm if

I~ -- m n, < 6 <v
m m

Thus (2.3) implies

(2.4) If(z)l KP(C0a - 121)
- 
(+

for sqome ponitive co nqtanlt ;)D) wit), i > -1. Conversely we have a weaker result.

Lemma 1. le t f(z) be analytic in P. &Nsume that

(2.; If(z)l K(1 -i Z7)I

for e > n and all IzI < 1. Then

V ; + <CX+

an, this ir -, ality i- q arj,.
i Prool • As

.f (2.7 - 2 )r- f( 7)z
- ( +  

d

lj



we get

(2.8) la 1 [ max If(z)lr "  K(l - r)- r-.
V Izl-r

Note that

min (1 - 0 r-V (1 - r) -- r- V4. a
m~~ (1--rr v -

V+3~

This establishes the first inequality in (2.6). To obtain the second inequality in (2.6)

choose in (2.8) r - %) and use the well known fact that (I + 2.v < e. To see thatchoei (.)r V + I

(2.6) is sharp for each V consider the polynomial

V V
(2.9) p(z) .a + V C

Let B be a Banach space with a norm 1! 11. Assume that A B B is a bounded linear

operator. Suppose that the spectrum of A lies in the unit disc. Then expanding

(I - zA)
"I 

in power series

V
(2.10) (I - zA) = zvA

v=10

we get

(2.11) A
v  

(21i) f (I - ZA) -dz

I zlfr<1

Thus if

i(2.12) 11(1 - zA)- 1, r K(I - Izl) -Q',  IzI < I

applying the results of Lemma 1 we obtain

(2.13) IIA'I < Ke(v + 1)O

It is an open problem whether the estimate (2.13) is sharp in some infinite

dimensional Banach space. The followinq restilt enables one to Improve the inequality

(2.13) for matrices (i.e. R is finite limensional).

%- 4



Theorem 2. Consider all polynomials p(z) and q(z) of degrees m and n respectively

-.. ch that the 'unction f(z) - p(z)/q(z) satisfies (2.5). Suppose that 2 ) 1. Then

there xists a positive constant p(a,m,n) such that

lav 1 Kp(a,m,n)v( (-I)
V

To prve this theorem we need the following lemma.

Lemma 2. Let p(z) be a polynomial of degree m. Then there exists a constant Y(m)

such that

')

max lp(z)l r K(m)( max Ip(re I)

lzl=r 1914./4

Proof. It is enough to consider the case r = 1 with p(z) of the form

m

p(z) = T7 (z 1 1i
i= 1

For m 1 it suffices to choose K(M) - 5. Let m > i. Define

K'(m) = max C max Jp(z)I/ max p(ei MI
(N 1 % ...'r- I I 3 jzl=1 16 1 11/4

is-i
In case that II I let q(z) TT Ut -T7 . Then

i-I

max lp(z)I % (14mi + 1) max 1q(z)1

Izl=i Iz=1

% 2(14 l-i)t(m - 1) max Iq(e i)I • 2K(m - 1) max Ip(e j)
19141/4 161%r/4

Put

K(m) - max(lt(m), 2X(m - 1))

and the lemma follows.

Proof of Theorem 1. Without restriction in generality we may assume that p(l) and

'If?) do nnt have common zeros. Also it is enough to consider the case K = 1. The

,i.ne'vafli~ (2.;) Implies that we can choose q and p of the form

-4-



M- n
(2.16) p(z) zA T (1 - zi), q(z) - FT(1 -z

i-I i-1

The inequality (2.5) yields Ii I 1, 1 - 1,...,n. Put

M-1 n
(2.17) g(z) A T7 (z - wi)/F (z -i-I i i

i-1 Ji i

(2.18) Ig(z)1 ' IzI m n+Q/(Izl - 1)0 ,  
IzI > 1

Also

S -(v+n-m)

(2.19) g(z) j a IZI > I
Vi0 V

Note that

a - (21i)
"  

/ g(z)z (Vn-m'lldz
V Iz1IR>1

Let D1,...,D p  be p-mutually disjoint, open and bounded domains with the boundary

P

rp respectively. Assume that C U Dj, i - 1,...,n. Then we obtain

(2.20) av  (2i)
- I  

(v+n-m-1)dz

rj

To obtain the estimate (2.14) we are going to choose the domains DI,...,D p  according to

the configuration of . ... ,n.and the value of v. First we group the points

SI,...,S s  following Morton (19641. Let ;i be one of the points with the largest

modulus, 1; 1 1 I - 61 ) 1i i 1,...,n. Then we form S1  from all those points

which can be joined to by a chain of points, each link of which has length "

In the same way S2 is formed from the remaining points, and so on until all the

points have been included in some S For each S we denote by 1 - and I-

the modulus of the largest and the smallest k1 1, V $ We rename So that

-5-
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(2.21) 0 1 ( , s
1 S

Consider any particular S. and let us denote its members by Xi' i = 1,2,...,k, where21

S- ( j\i ' - 5 , i = 1,...,k. Let us also denote the points not in S by Uj,

= 1,2. ,n - k. We claim

(2.22) 6 I - IVi I k 3, Il. -
jI < (k - 1)56, , . - I > 6

Indeed, the first two inequalities follow immediately from the assumption that there exists

a chain of at most k points between X. and A. such that the distance of any link1 2

( . The last inequality is a consequence of B. not being in S. Let

m-£

(2.23) h(z) = A I I (z - w.)
i=I 1

For Xt C S put

(2.24) = (1 + 26 )X t/IXt I

Then

(2.25) 
h(z) hz - q)j

j=0 3

We now estimate h.* Let r be a circle Iz - nI 6 . Then

Iz - <1 Iz - tI + Ixt - r
I 
< Iz - n + In - Xt t + IXt - I

= + 1 + 2 - (AtI + IX - .l < (k + 3)66 + I -

t t 1 8 I

where the last inequality follows from (2.22). In particular

17 - X.1 < 2(k + 1)6z

in view of (2.22). Apnly the Cauchy formula for h] and use (2.18) to get

-6-
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h I (21)-1f! h(z)dz(z-n)-J 6( J )4m+ T7 [(k+3)66 + t-;i IJ

(2.26)2n-k
. [2(k + 1)] k4m+ 6- (j+o)+k + [(k + Ix - iI]

[2(k + 2) n4m+'6 (J+c)+k i ixt -Wil
i= 1

We now consider the following three cases

(i) 6 ) 1/(2n+2 nv) ,

(ii) 6S 1/(4nv)

(iii) neither (i) nor (ii) holds.

Here v is a positive integer and v ) m - n + a.

Case (i). Let Ci  be a disc Iz -i
I 
< 65/2, for .i eS 8 Then

n p
(2.27) D =i c. = , U .

i=1 j=1

where each D contains a subset of some S, and 1. ) Dk  for j * k. Let r. be3 k

the boundary of Dj. Then (F) - the length of rj - satisfies the inequality

(2.28) (F.) ( 2rn(D.)60 ,3 B'

where n(Dj) is the number of points 11 I in Dj Let z e r.. Clearly

z = xt + 0, P = /2, s {X= 1 .... . By the definition of Oj, Iz - Xj> 6 %/2 for

I 4 j k. Also

z - W.1 = IX - Wi + PI > IX - 1 1 - 5 /2 ) 1 IX - j.
* t jt j B 2 t

Thus

n29)n-1 n -k n-k-

T2.29) T (z - C -2t -< 2-1 BSi~l '= J

Also for r of the form (2.24) we have

-7-



Iz - nI < Iz - I + IX - ni < + 1 + 26 - IX I < (k + 3)6t t 2 B t a

Tombine (2.25)-(2.26) with the above equality to deduce

n

(.,35; lh(z)l 4 (2(k + 2)In+m 4 m+OLka n IX -
Sti=I

Finally we deduce

(2.31) Ig(z)I ( [16(n + 2)] 6m+a6"a
S

Usino the equality (.20) and the inequalities (2.28), (2.31) for u > m - n we get

a (2)
- I f g(z)z ,116dz n116(n 2)n m in mi )-

-1 (vjs

4 n a16(n + 2)]n+m+a2 (n+2)(c-1) V a-I

as a > 1. Thus we have shown (2.14) (K 1).

Case (ii). Let Ci be an open disc with center at 4i/Iqi and radius 1/2V. Form

by (2.27). Assume that z eF . So3

(2.32) z = I + 2, iDi

We now estimate

K (r) =max I h~z)l I' r tz,z - 1+ - e) ,11

zer 2v 4

According to (2.18)

n

K(r) e(4v)[max Iz ---
zer t=1

for v m - n + a. Let n, = t? 1k). Clearly n, f r. We claim that fnr

z Fr or z of the form (2.32) which is in r we have

I.

5 t-4 Iz - t
I  31ni tI

indeed it is easy to see that for such z the following inequalities hold

-8-
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So

I n i  - t I ( z n- n i + I z - < 4 1 z - t + z - ; t I  = 5 1z - t
Iz - ;t I Iz - iI + l t I 2 i  -1 t I  +  Ini  - t I  

t31ni  -
I

Therefore

n
K(r) I e3n(4)' I -

t=1 
t

Let z .rI lo Then by Lemma 2 and the above ineaualities
i 1 2v

Ig(z) l ( K(m - Z)(15)n(4v1)e ,_n
1 1 1z - t
t=1

and b4m-n-n 7 1)m-n,-1 (

g( I K(m - £)(15)n(4v)3e(1 + 2) K(m - £e215)n(44 e

for V > m - n - a. As the lencrth of the boundary of D -ioes not excee-I -n/ fro-

(2.20) we get

la K(m - £n(15) 4 :te 
2  1

Case (iii). In this case we claim that there exists 1 < < s such that

(2.33) < 1 + max E. , -... - 1 = .f
3+1 2n 2 vn 0jr" D

and

(2.34) 
6
y 1 ) n_ _ + I'ax C.

2n2 vn 0 v,. D

otherwise either (M) or (ii) hold. (Note the ineouality 2.211. Put

1
(2.3S) r I max £. + 32i n+3 n

_h24.

:-9

I I 1 1I I I i I I . . . .r. . . . . ... ' 2 _ , ] 2 ! " - -



It i, not difficult to show that r Let i C S. Por denote by Ci A dis.

with center at ;i/1;i
I 

and radius r. For 8 > ' let Ci be a disc with center at

and radius !,/2. As before define D by (2.27). Now estimate av from the equality

(2.20) usinq the arguments of the Cases (i) and (ii) in accordance with 6 > y or y ' y

to Ahduce (2.14). This concludes the proof of Theoem 2.

Remark 1. A special case of Theorem 2, namely a = 1 and m = n - 1 was established in

Morton [13641.

Proof of Theorem 1.

(A) == (P). Follows immediately from (2.3).

(F) ==> (A). Let (I - zA)
-  

(fij(z))1ii I

Then f ij(z) pij(z)/qjj(z), where the degrees of pij and qij are n - I and n

respectively. Now (1.3) follows from Theorem 2.
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